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THERMAL DISSOCIATION OF A POLYDISPERSE
LUMP MATERIAL

N. N. Marutovskaya, N. P. Tabunshchikov, UDC 536,21:622,78
A, M. Aizen, and I. M. Fedotkin

The problem of the dissociation of a polydisperse lump material is examined using the statistical
approach and making due allowance for femperature-dependence of the coefficient of thermal con-
ductivity.

A number of papers [L-5] have been written on the subject of the process of thermal dissociation of ma-
terials in lump form. It has been shown experimentally [2]that there is a fairly clear interface between the
dissociated and undissociated substance which runs deep into the lump. This interface is the surface at which
the heat passing through the shell of reacted substance is consumed. The model of a heat exchanger with a
variable heat-exchange surface [5] is, therefore, suitable for use as a physical model of the process which is
compatible with the experiment. '

A formula for the time required for the dissociation of a single lump under the conditions of constant
thermophysical process characteristics is devised in [5] on the basis of several physically sound hypotheses
which simplify the investigation., It is, however, a well~known fact [6-8] that the thermophysical character-
istics of substances being heated are not constant, in particular, the coefficient of thermal conductivity can be
described as a linear function of temperature:

A=A (1 Faf). | (1)
It should be noted that if this relationship is disregarded for industrial furnace operating conditions,

there will be significant errors in the calculation of the material dissociation time. In addition, when samples
are heated, their porosity p is changed according fo the relation [9,10]

p=1152—0.0781. @)
By definition
p= Pr=—Pa 100. : (3)
oy

The dependence of the coefficient of thermal conductivity onthe temperature and apparent volumetric mass of
the material has been found in [7] in the form

A= 1.163 (— 1,011 — 0.066-10"% £ 4 1.513.1073 p,). @)
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By combining (2)- ) and taking into account the fact that the true volumetric mass of lime from lime-~
stone is p; = 3360 kg/ m®, it is possible to find values for the coefficients involved in Eq. (1):

Ay =—2.074 W/m-deg o= —0,185.-10"2 1/deg.

A relation for calculating the dissociation time taking into account dependence (1) when wt= 0.1, but
ignoring variations in the porosity of the material with temperature, hasbeen derived by the present authors
in [11]. Inthe present paper no limitations are imposed on the magnitude of wt,

The heat being fed to the reacting surface passes through the outer shell of reacted material with a
thermal conductivity A. The heat flux at the reacting surface of a spherical particle is determined by solv-
ing the stationary thermal-conductivity equation div (AVt) = 0 taking into account dependence (1) under
the boundary conditions

t=tg for r=ry, t=14 for r=r,. , ' (5)

The solution to the problem takes the form

t(r)=j)—h/l+2m(3——‘§~)—l], | (6)

where o e
A= b=t | G —Bory,
To—1y 2(rg—ry)
¢ (s —4)r (£ —L)or,
Bty ®d 4 U —W)r, U o
at 2 + To—T1 + 2(ro—ry)
The radius of the reacting surface ry is treated hereinafter as variable, i.e., ry =r. The heat flux
through the reacting surface
) —1 |
=Bl Ty 26— @
r(re—r) 2

The surface temperature of a spherical cone tg can be found from the equation of thermal balance:
4 nrtg = 4 wowrd (fn— &) (8)

The temperatures tm and tg are determined experimentally. The relationship between the temperature
difference Aty =tg — tq and Aty =ty — td, which can be found from Eqs. (7) and (8), is used to obtain the
following relation for determining the heat flux:
Aoar AL,
I7 T (Tl oy (1 —7)]

)

ary(ro—r) Al ]}
rho (1 + oty + ary(ry—r)
By representing the dissociation rate by the rate of volumetric change we obtain [5]

- G dr v ,
q Qspoy 100 a% oy

1+2 |2
{+2[d+

A comparison of (9) and (10) gives a differential equation for determining the dissociation rate:

100 Agor2At,  dv 2r {r [Ag (1 -+ aly) — aryl -+ ard)?

N L (A R L A

and r =0 for r =1,

Using the solution to Eq. (11) and the obvious relation

_1.
Lo (&)
12 Cq ’
for the limiting case cx = 0 we obtain a formula for determining the time required for the total dissociation

of a single lump:

Qsppocoro 1 N Iv2 IV3 N ]
Tp == — = K —— e — e — P — ]n — e
£ 750 Aty { [ s o T T M maw |t

1 N N? N . 1 N N ;
+ 2Kor, [_2MV — T e In m —}—N] + a®rg [ + ! ]} , (12)
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Fig. 1. Graphs of the dependence of 1t () on & (W/m? - deg): Qgp =
1781 kJ/kg; P, =2553 kg/m*; c, =98%; ro=0.05m; Ay=—2. 074
W/m-deg; w =—0,185-10"21/deg; tq = 740 + 0.148 tyy; 1)ty =
1000°C; 2) 1100; 3) 1200; and 4) 1300°C

Fig. 2. Dependence of mean rate of reaction front penetration ry/
7+ (m/h) on the temperature iy, of heating medium, °C: 1) caleula-
tion curve for o = 93 W/m? +deg; 2) experimental data; and 3) cal-
culation curve for o = 46 W/m” «deg.

where
K=h(14olg—oary M=2K(1 4 o) — awrfdly;

= [2(1 + ot + oAt ] or, .
When w = 0 from (12) we obtain a relation for determining rg, which was obtained in [5].

The results of calculations for limestone are shown in Fig. 1 in the form of the relationship r¢ = f{a).
As follows from Fig. 1, the kinetics of dissociation are influenced by an infensification of heat exchange in
the reaction zone up to a value of o = 80 W/m?+deg. The dissociation process is limited hereinafter by
the thermal conductivity of the material,

A good agreement between theory and experiment is achieved when calculated and experimentally
obtained data (Fig., 2) are compared. When the experiment is carried out, however, it seems to be im~
possible to maintain constant the value of the heat-exchange coefficient, which is made up of convective
and radiative components. As the temperature rises, the influence of radiative heat exchange on the over-
all value of the heat- exchange coefficient is increased so that the experimental data match an increase in
a from 46 to 93 W/m? -deg.

The ¢ = @(ry) relationships are plotted for various different values of tyy,.

For the subsequent transition to the statistical analysis of a polydisperse aggregate of lumps the
Tt = @fry) curves are approximated for each value of ty, by the following relationship:

=al(ro+m®+k, (13)

where k = —am?,

Let the curve of the distribution density of the equivalent radii of the lump aggregate, treated as a
random variable ry =X, be dencted by the function g{x). The distributiontime v =Y will then alsobe a
random variable related to X by the relationship

V=¥X)=aX+mP+k (@>0). 14)

The distribution density of the random variable Y is deterrrﬁned from formula (12);

N SN Gy g gy 1 ‘

The normal practice in industrial furnaces is to use a burden with regulated lump sizes, achieved by
sifting the fractions within predetermined limits, In this context, the burden lump sizes can be charac-
terized by a truncated normal distribution with a density [13]
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Fig. 3. Graphs of the distribution function °
of the dissociation time: x;=0.01 m; uyx =
0.024 m; 0x =0.016 m; ¢ =—0.875; 1)ty =
1300°C, @ = 278 h/m?, m = 0.018 m, k = —0.09
h, py = 0.62 h; 2)tm =1200°C, a =292 h/m?,
m = 0,034 m, k =—0.3375 h, py = 0.946 h; 3)
tm =1100°C, a =555.5 h/m?, m = 0.0225 m,

=—0.2812 h, py =1.39 h. '

1
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Using (15) and (16) we find the distribution of the random variable Y:

ro == {2 | % () SE—n—n)]-o0)]. an)

The mathematical expectation of the dissociation time is expressed by the relation

2= w [ G| 6> 16)

— 1t

2

py = a(m -+ )t + &+ ac + 12 (n+ p) + 0,8] V“%TE@T' (L8)

The parameters of the truncated normal distribution of the equivalent radii of the limestone lumps
are evaluated on the basis of the statistical processing of data on a random selection of 300 lumps using
the Fisher method {14].

Figure 3 shows graphs of the distribution function of the dissociation time for different temperatures
of the heating medium, which characterize the degree of completeness of the dissociation of a polydisperse
aggregate of lump material at a given moment in time.

NOTATION

A, coefficient of thermal conductivity; A s w, coefficients involved in Eq. (); pg,s apparent volu-
metric mass; p;, volumetric mass of original material; t, temperature; tg, temperature of outer sur-
face of lump; tg, dissociation temperature; ty,, temperature of heating medium; Ty, radius of spherical
lump; ry, radius of reacting surface; r, time; r¢, total dissociationtime; g, heat flux; «, coefficient of
heat exchange; Qsp’ specific heat flux; co,initialcontentof dissociating substance in lump;c,,concen-
tration of substance at moment intime r; @, m, k, coefficients involved in Eq. (9); X, Y, lump radius
and dissociation time considered as random variables; f(y), distribution density of Y¥; x,, truncation
point; pux, 0,";, mathematical expectation and standard deviation of corresponding normal distribution of
X; Hys mathematical expectation of Y; F(y), distribution function of random variable Y; ¢ = (x; — px)/0xs

@) = [1/VZ7] f ¢ ? dz, probability integral.
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TRANSIENT RESPONSE OF A THERMAL-DIFFUSION
COLUMN WITH BUFFER VESSELS AT THE ENDS

G. D. Rabinovich, V. M. Dorogush, UDC 621.039.3
and A, V. Suvorov :

The transient response in a column with buffer vessels at the ends has been determined for the
approximation ¢l — ¢) = ¢ +be, and this is compared with the asymptotic solution for small
times; the range of application of the latter has been determined.

Asymptotic solutions have been derived [1, 2] for the transient response in a thermal-diffusion column

with buffer vessels at the ends for two ways of approximating the nonlinear term in the transport equation,
namely, ¢(l —c) ® aand c(1 — ¢) =~ ¢; it was found that these asymptotic solutions can themselves be approx-
imated very closely by linear relationships of the form

A vE W
T

in which p and r are coefficients to be determined from experiment and which allow one to calculate the Soret
coefficient, However, uncertainty arises as to the time range in which each of the asymptotic solutions applies
when this method is used.

one,

The problem has been solved by deriving an exact solution, which is then compared with the asymptotic

- The problem is formulated [3] as follows: we have the differential equation

dc _ o de(l—o)]

@)

) oy? Jy
to be solved subject to the boundary conditions
Cloco =00 (4> 0), (3)
dc dc
g, | S, l—c)] 6> 0), 4
09 ly=0 [ 0y ( y= ( ( )
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